Design Assignment

Read Complete Research Material

DESIGN ASSIGNMENT

Design Assignment

Design Assignment

Design of Main Girder B and Cantilever Roof Truss Type A

Trussed hip framing offers the advantage of clear span, an eave or fascia line at the same elevation around the building, and the speed of pre-built components. The end slope may be equal to or different from the side slope. The ceiling line may be flat or sloped. Sloped ceilings have limitations, therefore, consult the truss designer.

Best suited for relatively short spans of 26'-0" or less, the hip jacks extend directly to the peak. The distance from the end wall to the face of the girder is equal to one half the span, provided the slopes are equal. The last standard truss is designed as a girder to carry the loads transferred by the hip jack. (Harik 2007 1262-1268)

Better suited for longer spans, the Step Down hip is the most versatile of all hip types. Each of the “step down” trusses is the same span and has the same overhang as the adjacent standard trusses, but decrease in height to form the end slope. The girder location is generally from 8 to 12 feet from the end wall and is determined by the span to depth ratio. The corner and end jacks are normally pre-built. The Midwest type hip framing was developed to create a more uniform configuration of each of the trusses in the hip. This hip type also provides for a more uniform structure for attaching the decking. Span capability is the same as the step down hip. (Villa and King 2001 3396-3416)

Although this type hip framing is used as an alternative to the step down hip, the California hip is similar in span capability and field installation. The base portion of each truss inside the girder is the same, except that the sloping top chord of each successive truss is extended upward greater amounts to form the slope intersection. Corner and end jacks are used to form the area outside the girder. (Wilson and Liu 2001 723-747)

Girder trusses have two main purposes. The first (Girder Truss A) exists in L, T, H and U shaped buildings to eliminate the need for an interior load-bearing wall. The girder is used to support one end of the intersecting trusses. The trusses are carried on the bottom chord of the girder by hangers. The second use of a girder truss (Girder Truss B) is to support perpendicular framing in hip roofs. In some plans girder truss A and B may be one in the same. The hip framing is carried on both the top and bottom chords of the girder truss by nailing or by hangers. Girder trusses, because of the heavy loads they support, are generally multiple units with larger chord members than the adjacent trusses. Generally, because of the construction of girders, overhangs are not used. The girder truss may also be designed for “drag strut” loads which are calculated and specified by the building designer. (Brownjohn and Blakeborough 2009 263-283)

Design of Roof Bracing Member ...
Related Ads