Gene Therapy

Read Complete Research Material

GENE THERAPY

Gene Therapy

Gene Therapy and Weather It can cure and prevent genetic diseases/disorders

Gene Therapy

Genes are carried on chromosomes, are the basic physical and functional units of heredity. Genes are specific sequences of bases that encode instructions on how to make proteins. Although genes get a lot of attention, it's the proteins that perform most life functions and even make up the majority of cellular structures (Featherstone, 2007). When genes are altered so that the encoded proteins are unable to carry out their normal functions, genetic disorders can result. This paper discusses Gene Therapy and if it can cure and prevent genetic diseases/disorders.

Gene therapy is a technique for correcting defective genes responsible for disease development. Researchers may use one of several approaches for correcting faulty genes:

* A normal gene may be inserted into a non-specific location within the genome to replace a non-functional gene. This approach is most common.

* An abnormal gene could be swapped for a normal gene through homologous recombination.

* The abnormal gene could be repaired through selective reverse mutation, which returns the gene to its normal function.

* The regulation (the degree to which a gene is turned on or off) of a particular gene could be altered.

How does gene therapy work?

In most gene therapy studies, a "normal" gene is inserted into the genome to replace an "abnormal," disease-causing gene. A carrier molecule called a vector must be used to deliver the therapeutic gene to the patient's target cells (Terry, S.F. et al., 2007). Currently, the most common vector is a virus that has been genetically altered to carry normal human DNA. Viruses have evolved a way of encapsulating and delivering their genes to human cells in a pathogenic manner. Scientists have tried to take advantage of this capability and manipulate the virus genome to remove disease-causing genes and insert therapeutic genes.

Target cells such as the patient's liver or lung cells are infected with the viral vector. The vector then unloads its genetic material containing the therapeutic human gene into the target cell. The generation of a functional protein product from the therapeutic gene restores the target cell to a normal state. See a diagram depicting this process.

Some of the different types of viruses used as gene therapy vectors:

* Retroviruses - A class of viruses that can create double-stranded DNA copies of their RNA genomes. These copies of its genome can be integrated into the chromosomes of host cells. Human immunodeficiency virus (HIV) is a retrovirus.

* Adenoviruses - A class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans. The virus that causes the common cold is an adenovirus.

* Adeno-associated viruses - A class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19.

* Herpes simplex viruses - A class of double-stranded DNA viruses that infect a particular cell type, neurons. Herpes simplex virus type 1 is a common human pathogen that causes cold ...
Related Ads