Rearranging the word “GREAT”, would give us the following list.
GREAT
GETAR
GTEAR
RETAG
RAETG
EGTAR
EARTG
ETGAR
ARETG
ATGER
TGEAR
TEGAR
GRETA
GETRA
GTERA
RETGA
RAEGT
EGTRA
EARGT
ETGRA
AREGT
ATGRE
TGERA
TEGRA
GRAET
GARET
GTAER
REGAT
RTAEG
EGRAT
EATRG
AGRET
ARTEG
ATREG
TRAEG
TERAG
GRATE
GARTE
GTARE
REGTA
RTAGE
EGRTA
EATGR
AGRTE
ARTGE
ATRGE
TRAGE
TERGA
GRTEA
GAERT
RGTEA
REAGT
RTGEA
ERAGT
EAGRT
AGERT
AEGRT
ATERG
TRGEA
TAERG
GRTAE
GAETR
RGTAE
REATG
RTGAE
ERATG
EAGTR
AGETR
AEGTR
ATEGR
TRGAE
TAEGR
GERTA
GATRE
RGETA
RATGE
RTEGA
ERTGA
ETRGA
AGTRE
AERGT
TGARE
TREGA
TAGRE
GERAT
GATER
RGEAT
RATEG
RTEAG
ERTAG
ETRAG
AGTER
AERTG
TGAER
TREAG
TAGER
GEATR
GTRAE
RGATE
RAGTE
EGATR
ERGTA
ETAGR
ARGTE
AETGR
TGRAE
TEAGR
TARGE
GEART
GTREA
RGAET
RAGET
EGART
ERGAT
ETARG
ARGET
AETRG
TGREA
TEARG
TAREG
The arrangements of word GREAT has provided the above mentioned 120 permutations. The word Great is comprised of five alphabets. So there are (5 x 4 x 3 x 2 x 1) = 120 different ways to carry out this process. A permutation is a combination where the order is important. The notation for permutations is P (n, r) is the number of permutations of "n" if only selected elements "r". The below mentioned formula of permutation is used for arrangement without repetition.
To construct the permutations without repetition of a set ...