Microbes For Industrial Microbiology

Read Complete Research Material

MICROBES FOR INDUSTRIAL MICROBIOLOGY

Microbes for Industrial Microbiology



Microbes for Industrial Microbiology

Introduction

Microbiology, study of microorganisms, or microbes, a diverse group of minute, simple life forms that include bacteria, archaea, algae, fungi, protozoa, and viruses. The field is concerned with the structure, function, and classification of such organisms and with ways of both exploiting and controlling their activities.

The 17th-century discovery of living forms existing invisible to the naked eye was a significant milestone in the history of science, for from the 13th century onward it had been postulated that “invisible” entities were responsible for decay and disease. The word microbe was coined in the last quarter of the 19th century to describe these organisms, all of which were thought to be related. As microbiology eventually developed into a specialized science, it was found that microbes are a very large group of extremely diverse organisms.

Daily life is interwoven inextricably with microorganisms. In addition to populating both the inner and outer surfaces of the human body, microbes abound in the soil, in the seas, and in the air. Abundant, although usually unnoticed, microorganisms provide ample evidence of their presence—sometimes unfavourably, as when they cause decay of materials or spread diseases, and sometimes favourably, as when they ferment sugar to wine and beer, cause bread to rise, flavour cheeses, and produce valued products such as antibiotics and insulin. Microorganisms are of incalculable value to the Earth's ecology, disintegrating animal and plant remains and converting them to simpler substances that can be recycled in other organisms.

Historical background

Microbiology essentially began with the development of the microscope. Although others may have seen microbes before him, it was Antonie van Leeuwenhoek, a Dutch draper whose hobby was lens grinding and making microscopes, who was the first to provide proper documentation of his observations. His descriptions and drawings included protozoans from the guts of animals and bacteria from teeth scrapings. His records were excellent because he produced magnifying lenses of exceptional quality. Leeuwenhoek conveyed his findings in a series of letters to the British Royal Society during the mid-1670s. Although his observations stimulated much interest, no one made a serious attempt either to repeat or to extend them. Leeuwenhoek's “animalcules,” as he called them, thus remained mere oddities of nature to the scientists of his day, and enthusiasm for the study of microbes grew slowly. It was only later, during the 18th-century revival of a long-standing controversy about whether life could develop out of nonliving material, that the significance of microorganisms in the scheme of nature and in the health and welfare of humans became evident.

Spontaneous generation versus biotic generation of life

The early Greeks believed that living things could originate from nonliving matter (abiogenesis) and that the goddess Gea could create life from stones. Aristotle discarded this notion, but he still held that animals could arise spontaneously from dissimilar organisms or from soil. His influence regarding this concept of spontaneous generation was still felt as late as the 17th century, but toward the end of that century a chain of observations, experiments, and arguments began that eventually refuted the ...
Related Ads